Using R on the HPC Alex Townsend

Introduction to R

- R is a statistical analysis tool and a programming language.
- R is widely used for data analysis in a variety of fields.
- R is free and open source!

Using R on the HPC

- R is available on both the Spear and HPC Systems.
 - There are two versions of R available.
 - The default version can be loaded by typing the following into the terminal
 - -R
 - The other version, which is the most up-to-date and is recommended for use can be loaded with the following commands:

Using R on the HPC

- You can run R on the Login Nodes
 - This limits you to one node and up to 24 cores.
- You can also submit your R job to the Compute Nodes.
 - This allows you to use multiple nodes, each of which have a large number of cores, usually between 24 and 48.
 - This also allows you to use GPUs.

The Advantages of R on HPC

- R can be run normally on any laptop. Why use HPC?
 - Parallel Computing!
 - The parallel package ~ Multicore
 - The rmpi package ~ Distributed
 - GPU Computing!
 - gpuR and tensorflow Packages

Today's Example

- For the example today, we will be tuning a simple R script using a built-in dataset of SAT and ACT scores. This will go in 2 steps.
 - Step 1: Write a simple script for Serial Computation
 - Step 2: Modify the script for Multicore Computation

```
# load the Package with the Data
library(psych)
# Get the SAT and ACT Score Dataset
dataset <- sat.act
# Clean the Dataset (Remove Missing Data)
cleandata <- na.omit(dataset)
# Now get the Column Means for the data
means <- colMeans(cleandata, na.rm=TRUE)</pre>
# Now compute the Column-Wise Variances for the data
vars <- apply(cleandata, 2, var)</pre>
```

1	#!/bin/bash
2	
3	#SBATCHjob-name="R Template"
4	
5	
6	
	#SBATCHmail-type=ALL
8	
	#SBATCH -n 24
0	
1	
	#SBATCH -p genacc_q
3	"Source p genace_q
	#SBATCH -t 14-00:00:00
5	#30ATCH C 14 00.00.00
6	
.7	
.8	
9	
1	
	modulo lood D
	module load R
3	
4	
5	
6	R CMD BATCH parallel_script.R

```
1 # load the Package with the Data
2 library(psych)
4 # Load the PARALLEL library for Multicore Computing!
5 library(parallel)
7 # Get the SAT and ACT Score Dataset
8 dataset <- sat.act</pre>
10 # Clean the Dataset (Remove Missing Data)
11 cleandata <- na.omit(dataset)</pre>
12
13 # Determine how many cores you have available
14 cores <- detectCores() - 1
15 print(cores)
17 # Build a virtual "cluster" out of these cores
18 cluster <- makeCluster(cores)</pre>
20 # Now get the Column Means for the data
21 means <- parLapply(cluster, cleandata, mean)
22 print(means)
24 # Now compute the Column-Wise Variances for the data
25 vars <- parLapply(cluster, cleandata, var)
26 print(vars)
28 # Now stop the cluster and release the resources
29 stopCluster(cluster)
```

1	#!/bin/bash
	#SBATCHjob-name="R Template"
4	
5	
6	
7	#SBATCHmail-type=ALL
8	
9	#SBATCH -n 24
0	
2	#SBATCH -p genacc_q
3	
.4	#SBATCH -t 14-00:00:00
.5	
б	
8	
9	
0	
	module load R
3	
4	
.5	
6	R CMD BATCH parallel_script.R

Advanced Topics

- R also has packages available to make that same script useful for Distributed Computation
 - For this, we would use the Rmpi package.

Advanced Topics

- R also has packages available to make that same script useful for GPU Computation
 - gpuR and tensorflow