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Outline 

▪  Introduction to GPU architecture 

▪  Introduction to CUDA programming model 

▪  Using the GPU resources at the FSU/RCC  

▪  Deep learning accelerated by GPUs 
 
            



GPU-Computing 

▪  GPU:      Graphics Processing Unit 

▪  GPGPU: General Purpose GPU.  

▪  GPU-accelerated computing: is the use of a GPU together with 

a CPU to accelerate scientific, analytics, engineering, consumer, 

and enterprise applications.  

▪  CUDA: Compute Unified Device Architecture 

▪  Remark.  GPU does NOT work by itself. It is used as a device of 

a CPU.  



GPU Market Shares (Q4-2017) 

§  We will be concentrate on NVIDIA GPU product 

§  The CUDA language was created by NVIDIA 
 



NVIDIA GPU Product Families 
▪  Tegra:      mobile and embedded devices (e.g., phones) 

▪  GeForce: consumer graphics  (e.g., gaming) 

▪  Quadro:   professional visualization 

▪  Tesla:      high performance computing  (Tesla M2050) 

GTX 1080 Ti 



Compute Capability (p1) 

§  GPU product family is classified using Compute Capability 

§  Volta      class architecture has major version number  7 

§  Pascal    class architecture has major version number  6 

§  Maxwell  class architecture has major version number 5 

§  Kepler     class architecture has major version number 3 

§  Fermi      class architecture has major version number 2 

§  Tesla       class architecture has major version number 1 

Compute Capability:    major.minor  say, 6.1  



Compute Capability (p2) 

§  GTX1080Ti key data: 



GPU core VS CPU core 

§  CPU core: relatively heavy-weight, designed for complex     

         control logic, optimized for sequential programs. 

§  GPU core:  relatively light-weight, designed with simple   

         control logic, optimized for data-parallel tasks, focusing on    

         throughput of parallel programs. 

§  CPU+GPU:   heterogeneous architecture 

 



Heterogeneous Architecture 

Multi-core CPU      +         Many-core GPU 

Remark: GPU has its own memory, connect to GPU via PCI-express bus 

Remark: Differentiate Multi-Core from Many-Core (Intel Phi co-processor) 



CUDA Programming Model (p1) 

§  Divide your code into Host (CPU) and Device (GPU) Code 

§  Processing flow of a CUDA program: 

         a.   Copy data from CPU memory to GPU memory 

         b.   Invoke kernel to run on the GPU. 

         c.   Copy data back from GPU to CPU memory 

         d.   Release the GPU memory and reset the GPU. 

§  CUDA code file name extension  .cu 

§  CUDA compiler:  nvcc   (it compiles .c, .cpp too!) 

§        $ nvcc  -o  a.out  a.cu           

      



CUDA Programming Model (p2) 

§  The kernel function is run concurrently by many threads on the GPU. 

§  CPU might or might not wait for GPU depending on synchronization. 

§  Can have more than one kernel functions in your CUDA application. 

Kernel_A() 

Kernel_B() 



2-Level Thread Hierarchy (p1) 

§  There are many threads, so they need be managed. 

§  Grid:  All threads spawned by a single kernel. 

§  Grid is made up of many thread blocks. 

§  A thread block is a group of threads which can cooperate 

         Intra-block synchronization 

         Shared memory within a block 

§  A thread finds its own unique id using two coordinates:  

blockIdx and threadIdx, for example (1D case): 

          id =  threadIdx.x + blockIdx.x*blockDim.x 

      

 

 

      



2-Level Thread Hierarchy (p2) 

Example:  2D grid  +  2D block   



Hello World 

CUDA Hello World 



First CUDA Kernel: show my id 

An example Kernel function  checkIdx() 



First CUDA Code Example: main() 

 Kernel function invocation:  checkIdx<<<grid, block>>>(); 



GUDA Kernel Function 

§  Declaration Syntax: 

         __global__  void name(arg1, arg2, …) { 

                function body; 

         } 

§  __global__ is a function type qualifier. 

§  Kernel function is invoked by CPU, but run on GPU in many 

copies (one thread per copy). 

§  Kernel invoking Syntax: 

         name<<<grid, block>>>(arg1, arg2, …) 

         both grid, block are of type dim3, e.g, 

        dim3  gridDim(4,1,1);   dim3  blockDim(16,1,1); 

 

 

      



GUDA Function Type Qualifiers 

§  Declaration Syntax: 

         __global__  void name1(arg1, arg2, …){ 

                name2(arg1,arg2); // invoke device function 

         } 

        __device__  double name2(arg1, arg2, …){ 

                function body; 

         } 

       __host__  float name3(arg1, arg2, …){ 

                function body; 

         } 

 

 

      

Host and device routines only run on CPU, and GPU respectively. 
Global declares kernel function, run on GPU, which can call device 
functions. 



GUDA Kernel Function (again) 

§  What should be in the Kernel function?  

        for (i = 0; i < 1000; i++) 

                C[i] = A[i] + B[i]; 

         } 

§     __global__  kernel (int* A, int* B, int* C) { 

                id = threadIdx.x + blockIdx.x*blockDim.x; 

                C[id] = A[id] +B[id]; 

        } 

In essence, your for loop with for peeled off, but keep the 

things inside. 

The key part is to map your data to threads (array indices). 

      



GUDA Memory Operations  

§  How to move data between CPU and GPU?  

          cudaMalloc( (void**) &A_d,  size_t  n_bytes); 

          cudaMemcpy(ptr_dest, ptr_src, n_bytes, direction); 

§  Where 

          ptr_dest, ptr_src are destination/source pointers; 

          direction can be 

                cudaMemcpyHostToDevice 

                cudaMemcpyDeviceToHost 

                cudaMemcpyDeviceToDevice 

§        How to free Cuda Memory? 

               cudaFree(A_d);    

     



GUDA Memory Operations (2) 



GUDA Memory Operations (3) 

Example: Sum two 1D arrays assuming 1D block and 1D grid: 
Here is the kernel routine sum_1D:  

The main function was already shown in the previous page 



How to Compile CUDA Code?  

Cuda nvcc compiler (cuda-9.0 at the RCC): 
 
a.  Pure C code:  a.c 
 
         $ nvcc  -o a.out  a.c 
 
b.  Single Cuda code:  a.cu 
 
         $ nvcc   -arch sm_61  -O3  -o a.out  a.cu 
 
c.  C and Cuda Mixed:  a.cu and b.c 

         $ gcc    -o b.o   -c  b.c    
         $ nvcc  -o a.out   b.o    a.cu 



Use GPU ON the HPC Cluster (p1)  

    Step 1:  Load the cuda module 
  
            $  module load cuda 
 
    Step 2:  Compile your cuda code 
 
            $  nvcc  -o  a.out    a.cu 
 
    Step 3:  Create a slurm job script 
 
            $   vi  slurm.sub          
 
    Step 4:  Submit your job. 
 
            $    sbatch  slurm.sub 



Use GPU ON the HPC Cluster (p2)  
§      There is NO partition called gpu_q anymore! 
     
§      Both partition “backfill/backfill2” has a few nodes with GPUs 
  
§      Not all nodes of the above partitions have GPUs 
 
                         #SBATCH  -p backfill 
                         #SBATCH  --gres=gpu:[1-4] 

§      The clock limit is 4 hours. 

                         #SBATCH -t  4:00:00 

§       At least one node in “genacc_q” has GPUs (14 days!) 

§      There is no GPU installed on the login node  
 
            srun -p backfill2  -t 30:00  -n 1 --gres=gpu:1 --pty /bin/bash 



Querying GPU Devices 

§  How do I get information about the GPU on a node? 

§  To get number of GPU cards on a node: 

           cudaError_t  cudaGetDeviceCount(int * dev_count); 

§  To get device properties of a device:  

           cudaDeviceProp  devProp 

           cudaGetDeviceProperties(&devProp, dev_number); 

           printf(“device name:  %s”, devProp.name); 

§    See following page for an example      

     

 

      



Querying GPU Devices 



Monitoring GPU Activities 

Do we have a GPU utility similar to  the tool top in linux? 
Yes. nvidia-smi 



Timing My Kernel Code? 

We can time a CUDA kernel by building a CPU timer. 



Timing My Kernel Code (2)? 

Then we can time a kernel call by wrapping it by two  
      cpuSecond() calls. 

Timing the CUDA kernel  sumMatrixOnGpu() 

The above code snippet also deals with CUDA errors… 



CUDA Error Handling? 

Here are 3 functions which help you debugging your CUDA 
code: 
 
         a.  cudaError_t   cudaGetLastError(void);  
       
         b.  cudaError_t   cudaPeekAtLastError(void); 
 
         c.  const char*  cudaGetErrorString(cudaError_t error); 
 

What do they do?  
 
     a.   return the last error code, and reset it to cudaSuccess. 
     b.   return the last error code, but do NOT reset it. 
     c.   convert error code to a readable error string. 



Synchronizing the Device 

You probably have noticed this line in the previous example 
 
         cudaDeviceSynchronize();  
       
a. Why we need this line? 
b. What does it do? 

Answers: 
 
a.  CUDA programming model is asynchronous between CPU 

and GPU.  
b.  The cudaDeviceSynchronize() force the CPU to wait for the 

kernel code to finish before moving on.       
c.    The CPU timer will fail if CPU does not wait for the kernel. 



Thread Synchronization? 

How about synchronization of all threads of a Kernel? 
 
a.   Threads within a block can be synchronized 
              
               __syncthreads();  (see example near the end) 
   
b.   Threads of different blocks CAN NOT be synchronized. 
 
               They should NOT be (dead lock!).  
                 
c.   Different blocks can be scheduled to start at different time 
by the GPU. 



Thread Organization—Hardware view 

▪  Software view:  

           grid of blocks,  

        blocks of threads 

▪  Hardware view?    

▪  Streaming Multi-Processor 

(SM)  see the right  

▪  A GTX1080 Ti has 28 SMs. 

▪  Each SM has 128 cores. 

▪  28*128 = 3584 cores  

▪  A warp = 32 consecutive threads 
A Quarter of a Pascal SM 



Thread Organization—Hardware view 

▪  A thread block can be assigned to only one steaming multi-

processor. 

▪  One multi-processor can have many blocks assigned to it. 

▪  Threads within a block are grouped into warps, each warp has 

32 consecutive threads. 

▪  Comment:  number of threads in a block should be a multiple 

of 32 (the warp size). 

▪  Question:   How about a block with say, 8 or 16 threads?   

▪  Question:   A SM of GTX1080 has 128 cores, why a block can 

have thousands of threads? 



Thread/Warp Divergence 

▪  Threads of the same warp work in the SIMT mode 

▪  SIMT: single instruction multiple threads 

▪  Only one instruction can be executed at one time 

▪  Warp divergence: when threads in the same warp are 

executing different instructions. For example, 

           id = threadIdx.x; 

             if ( id < 16 )  { 

                  printf(“I take branch one”); 

             } else { 

                 printf(“I take branch two”); 

             } 

       Performance will be degraded because of warp divergence.    



Thread/Warp Divergence 

▪  Performance will be degraded because of warp divergence.    

50% Performance Loss 



CUDA Memory Model 

▪  Similar to thread hierarchy, GPU has a memory hierarchy, and CUDA 

expose a lot of this hierarchy to you. 

CPU Memory Hierarchy 



CUDA Memory Model 

▪  Registers            (threads) 

▪  Shared Memory  (block) 

▪  Local Memory      (threads) 

▪  Constant Memory (Application) 

▪  Global Memory     (Application) 

▪  Texture Memory   (Application) 

GPU Memory Hierarchy 

Fermi:   63  registers per thread 

Kepler: 255 register per thread 

Each SM has a L1 cache 

Each device has a L2 cache 



CUDA Memory Model  

▪  Shared Memory + L1 cache = 64KB per SM (precious) 

▪  Each Fermi GPU have 768KB  L2 cache (precious) 

▪  Local memory is off chip, and is on the device memory 

▪  Access of local memory is sped up by L1/L2 cache.  

▪  Question: Which one is faster, shared or local memory? 

▪  Answer: shared memory 



CUDA Variable Type Qualifiers 

§  Shared Memory  (sit in the SM) 

            __shared__  double  a 

§  Global Memory    (sit in Device memory) 

            __device__   double  a 

§  Constant Memory (sit in Device memory) 

            __constant__ double a 

§  Registers  (automatic) 

§  Local variables (automatic) 

  



CUDA Variable Scope 
Where to declare these many different types of variables? 
     a.   __global__ and __constant__ outside of any function 
     b.  registers/local/shared variables are declared in the kernel 



CUDA Memory Model 
GPU Variable Type Qualifiers: 

Remark: Local memory does not physically exist, it is put in the 
global memory by the compiler. 



Local/Shared/Registers Example 

To do: compile and run with/without __syncthreads() line.  
 
            

A GPU local variable example (localVariable.cu): 



Global Variable Example 
A GPU global variable example (globleVariable.cu): 



Summary 

▪  Heterogeneous programming model 

▪  Thread hierarchy (blocks, grids; warps) 

▪  Memory hierarchy (not enough details today) 

▪  Racing Conditions/Atomic Operations (not covered) 

▪  Tune CUDA code performance (not covered) 

 
 
            



Deep Learning Neural Network 
▪  A neural network with at least 2 hidden layers 

▪  The hidden layers can be very wide (millions of hidden units) 

▪  The width (# of units) varies from layer to layer. 

            

A 4-layer deep neural network 

W [1],b[1] W [2],b[2] W [3],b[3] W [4],b[4]



Example: digit recognition 

§  Model: simple 1-layer neural network. 

§  Activation function:  

x784 y10+b10
(www.tensorflow.org) 



Why IS GPU Ideal for Deep Learning? 

§  Simple floating point calculation (e.g, matrix operation) 

§  Special function unit (exponential function) 

§  A huge amount of brute force calculation 

§  Cuda library such as cuDNN  (libcudnn.so) 

§  Framework such as Tensorflow (Python/C++), Keras, etc. 



Why IS GPU Ideal for Deep Learning? (p2) 

§  NVIDIA Volta GPUs dedicated for deep learning.   

(picture from Volta User Guide) 


