Machine Learning With Python

Bin Chen
Nov. 7, 2017
Research Computing Center

FLORIDA STATE UNIVERSITY
RESEARCH COMPUTING CENTER

Outline

» Introduction to Machine Learning (ML)
» Introduction to Neural Network (NN)
= |Introduction to Deep Learning NN

= |ntroduction to TensorFlow

= A little about GPUs

Motivation

Statistical Inference

Statistical Learning Big Data

Super Computer

Machine Learning
fuel

Deep Learning Artificial Intelligence

Machine Learning (p1)

» Supervised VS Unsupervised learning
« Regression VS Classification

= Linear VS Nonlinear Regression

» Binary VS Multivariate Classification.
» Clustering (e.g., K-Means)

» Support Vector Machine (SVM)

= Neural Network, Deep Neural Network

Machine Learning (p2)

Regression:
Predict the price of a house.
Binary classification y = [0,1]:
Online advertisement. (will this customer hit this AD?)
Multivariate classification
= Digit recognition y =[0,1,2,3,4,5,6,7,8,9]

= Image recognition (is this a cat?)

0= 3 456 789
© 12243561784
0) A3 4567 61
21239506787
21337541789

Machine Learning (p3)

Structured data:

= Data like tables with records,

= say, predicting house price, loan approvals.

Unstructured data:

= Images, Audios.

= human’s natural perceptions often do a great job with accuracy
close to Bayes error.

ML has beaten human beings on many structured data
Amazon’s recommended list of books

Deep learning is doing the same thing for unstructured data.

= Autonomous driving

= Natural language processing (NLP)

Machine Learning (p4)

Deep learning is a subset of machine learning.

The statistics is essentially the same, e.g.,
loss/cost function (minimize the cost)
training/dev/test set

bias-variance tradeoff

model tuning/reqularizing (hyper-parameters)

Details differ, and there are new concepts, e.g.,
activation function (sigmoid, RelLU)
gradient descent (momentum, RMSprop, AdamOptimizer)

forward/backward propagation(vanishing/exploding gradient)

dropout, batch normalization.

Machine Learning (p5)

Am | under/over-fitting my data (Bias-Variance tradeoff)?

High Bias Low Bias
Low Variance High Variance
e e —— -

T'est Sampl

Prediction Error

v

I'raining Sample

Low High

Model Complexity

(source: Hastie, Tibshirani, & Friedman, text book E.S.L)

Machine Learning (p6)

Training/Dev/Test splitting of data

(Traditional Machine Learning)

Train ~60% Dev ~20% Test ~20%

(Deep Learning)

Train ~98% Dev~1% Test ~1%
(Deep Learning with Mis-Matched Data)

Train ~78% Train-Dev 20% Dev 1% Test 1%

What Drives Deep Learning? (p1)

= Scale-Performance Relationship

A

Large NN

Medium NN

—

Performance

Small NN

SVM, regressions,
etc.

Amount of Data

What Drives Deep Learning? (p2)

= The amount of data available

= The amount of computation
The width and depth of the network

= Progress in algorithm design
Activation function (from sigmoid to RelLU)
from SNN, to CNN, RNN, etc.

= The computing power of modern hardware

E.g., Graphics Processing Units (GPUs)

Outline

» Introduction to Machine Learning (ML)
* Introduction to Neural Network (NN)
= |Introduction to Deep Learning NN

= |ntroduction to TensorFlow

= A little about GPUs

From Regression to Neural Network (p1)

A
y=wx+b
®
®
8 % .
al
®
R

Size of house

Standard linear regression

From Regression to Neural Network (p2)

A deep learner’s abstraction of the linear regression:

A Neuron

Y4
Y4

L/
Size x G > Pricey

Q1. So can | consider my simple linear regression as a neural
network?

Answer: Yes, sort of.
It is a single-layer network, with activation function g(x) = x

Such simplistic activation function is almost never used.

From Regression to Neural Network (p3)

Y= f(x1’x2’x3’x4)
7

Size x
e
L/
#bedrooms
. > Pricey
Zip code —
Wealth
Still regression!
Size x Family size
#bedrooms
Price y
Zip code
Wealth School quality

Neural network with one hidden layer

What is a neural network? (p1)

”ifl_(lvn

(Picture from Wikipedia)

= Q1. How many layers are there?

= Q2. How many hidden units?

= Q2. Is it a deep neural network?

= Q3. What does the arrow mean?

What is a neural network? (p2)

Hidden
= Q1. How many layers are there?

' = A1: 2 (instead of 3).

Output

4L\ % = Q2. How many hidden units?

N 8 = Q3. Is it a deep neural network?

< e - = A4: no! (>=2 hidden layers)
:‘ = Q4. What does the arrow mean?

_/ = A4: flow of data (tensorflow)

(Picture from Wikipedia)

What is a neuron? (p1)

Dendrite Axon terminal

Node of

4 Soma Ranvier
Axon I
Schwann cell

Myelin sheath
Nucleus

(Picture from Wikipedia)

What is a neuron? (p2)

A neuron does simple and specific task: an affine transformation
composed with an activation function.

(Pay attention to the naming of each variables: z, w, a, b, etc.)

aaaaaa

Schwann cell

Myelin sheath

z=wlx+b

a=o0(z)

(Picture from Andrew Ng)

Activation function

= Activation function adds non-linearity to your network.

= Popular activation functions include, sigmoid, tanh, ReLU

= Different layers of can use different activation function.

a

ya

Z
1

1+e2

sigmoid: a =

a

A

A

Re LU |

v

v

—

LeakyRe LU

Logistic Regression VS Neural Network

The sigmoid activation function was also used in logistic
regression in traditional statistical learning.

Logistic regression is simple Neural Network with sigmoid

activation function.

1+ e—(wa+b)

Loss Function and Cost Function

The Loss function L(y,y,) tells how well your model
fits a data point (here i labels the data point).

Cost Function J is the average of the loss function over
the sample.

Binary Classification as an example
L(y,y,)=-[ylogy +(1-y)log(l-y)]
1 m R
J = EZi:lL(yi,yi)

Chi-square for regression analysis as another...

1 m ~ 2
J = ZEH(J}" —)/,-)

Loss Function and Cost Function (p2)

= Why we need the Loss function, or the cost function?
= Answer: we need them to determine the model parameters

= To train the NN we optimize the cost via gradient descent.

—> L(y.y)

4 I.\

Inference Graph and Train Graph Tensor

il Gradient Descent

= Given labeled data (x_i, y_i), find the parameters (W _{jk},
b_j) by minimizing the cost function J.

= Method: gradient descent

oJ
1 6 =60 —-a——
1(6.0,). / 790,
| J
(a is the learning rate)

0o

(From Andrew Ng’s Lecture Notes)

Outline

» Introduction to Machine Learning (ML)
» Introduction to Neural Network (NN)
* Introduction to Deep Neural Network

= |ntroduction to TensorFlow

= A little about GPUs

Deep Neural Network

A neural network with at least 2 hidden layers
The hidden layers can be very wide (millions of hidden units)

The width (# of units) varies from layer to layer.

) hidden layer 1 hidden laver 2 hidden layer 3
input layer

output layer

Jo
A .

L0

CE :
p o B
.- ,-
Oz
W[4] : b[4]

A 4-layer deep neural network

Forward and Backward Propagation

Forward propagation: given labeled data (x_i, y_i), and parameters

(W, b) compute the cost function J.

Backward propagation: compute the derivatives of cost function

w.r.t the model parameters. Update the model parameters (W, b).

W[l] bt w2l ,b[Z] W[3] ,b[3]
- l |

X ——> RelU |—>| ReLU |—>| Sigmoid —> y \

lz[l] 12[2] l Z[3] L()?,y)
oJ oJ /

dat! PYiEN o
ReLU |€——| RelLU |€——| Sigmoid |€——

l l l

dw™, dp™" dw'™ dp?* aw'™, ap®

Compute the Derivatives

= Using binary classification an example

L(y,y,)=-[ylogy +(1-y)log(l-y)]

:8L=—yi +1_)j"

N

vy 1-p

= Assuming sigmoid activation function

1 =>8_a_a(1 a)

l+e 0z

y=a=g(z)=

= Derivatives for the affine/linear transformation is easy

- 0 0
W+b=i—x i =0.
8W 7’ Gb v

= Now using chain rule to concatenate the above together.

Computation Graph (Divide & Conquer)

= The computation graph for J=3*(a+b*c)

&= 11

b=3—_ . : v=a+u J—'{ = 3v ’
w| usbc |7

c=2" ‘ '

= This really helps when you think about forward/backward
propagation.

X1

N\

X7 6x+b0(2) ra=y
Z a
X3 L

= Understand/Stick with a good notation is also critical.

1z Parameters VS Hyper-parameters

= Parameters: (W, b) for each layer of the NN.
(W, b) can be learned by training the NN using the training data set.
= Hyper-parameters include:

layers for the NN;

units for each layer;

learning rate a.

the choice of activation function.

batch data size.

o a W=

iteration for convergence.
= Deep learning tends to have many more hyper-parameters
than normal ML methods.

= Hyper-parameters are determined via the dev data set.

Parameters VS Hyperparameters (p2)

Choosing between other machine learning methods and
deep leaning can be empirical.

Large number of hyper-parameters make deep learning very
empirical.

Idea

(Pic from Andrew Ng)
Collect Data

Experiment ‘ Code

/ \

Hardware (GPU,CPU) Software packages
I (Sklearn, Torch, Caffe, Keras, Tensorflow)

FSU/RCC

Outline

» Introduction to Machine Learning (ML)
» Introduction to Neural Network (NN)

* |Introduction to Deep Learning NN

* Introduction to TensorFlow

= A little about GPUs

Introduction to TensorFlow (p1)

A framework (library/package) for deep learning.
Open source (originally by Google Brain Team).
Python/C++ frontend, and C++ backend.
Support hardware accelerators GPU.

Current stable release v1.3

nl.\

Tensor

N
How does TensorFlow work? '|~

Tensor
User defines the architecture of the NN (inference graph).

User defines the loss/cost function (train graph).

User provides the data (train/dev/test).

= User chooses the optimizer to try.

= User picks hyper-parameters (mini-batch size, learning rate).
= Tensorflow does the rest automatically for you.

forward propagation to compute the loss function;
backward propagation to compute the derivatives;
many optimization algorithms are included

(e.g., tf.train.GradientDescentOptimizer(),

tf.train. AdamOptimizer(...))

A Toy Example (ex01)

Goal: train a toy Neural network with loss function
Lw)=w’>-12w+36

Here w is the only parameter to learn.
The training output should be very close to 6.

Sorry (no input at all, but will add later on).

Tensor

In

In

In

In

[3]

[4]

A Toy Example (ex01) '|.‘

Tensor

import tensorflow as tf
import numpy as np

cost function J = w*#*2 - 12*w + 36
optimized w should be 6.

w = tf.variable(0, dtype=tf.float32)
J = w**2 - 12*w + 36 # operator overloading
train = tf.train.GradientDescentOptimizer(0.01).minimize(J)

you must always create a Session, and initialize your variables
init = tf.global variables initializer()

session = tf.Session()

session.run(init

before training, w = 0.0
print (session.run(w))

train with 1000 iteration
for i in range(1000):
session.run(train)

now the w should be very close to 5 now
print(session.run(w))

0.0
5.99999

In [2]:

Toy Example Improved (ex01b) T

N

. 2 Tensor

= Loss function L=xw" —-xw+Xx,

data x is defined as placeholder

variables is trainable, placeholders are not!

X = tf.placeholder(tf.float32, [3,1])

w = tf.Variable(0, dtype=tf.float32)

J = x[0] * w*¥*2 + x[1] * w + X[2] # operator overloading

train = tf.train.GradientDescentOptimizer(0.01l).minimize(J

In [3]:

In [4]:

you must always create a Session, and initialize your variables
init = tf.global variables initializer()

session = tf.Session()

session.run(init)

this will be my data "x"
coeffs = np.array([[1], [-12], [36]1])

train with 1000 iteration
for i in range(1000):
session.run(train, feed dict={x:coeffs})

now the w should be very close to 5 now
print(session.run(w))

5.99999

Example-02: Linear Regression ‘|.‘

Tensor
Mysterious equation: y=0.2x+0.5+¢

Model: V=wx+ b
Goal: given enough (x_i, y_i) pairs, find out (w,b).

0.700 -
0.675 -
0.650 - ._.,._'_'.. :
0.625 - o
0.600 -
0.575 1 °°.
0.550 - o of

...
05251 . 2.,

05004 °
0.0 0.2 04 0.6 08 10

@) Example-02: Linear Regression (p2)

In [1]:

In [2]:

= Generate the data: y= 02x+0.5+¢

import tensorflow as tf
import numpy as np
import pylab as pl
tmatplotlib inline

#vy = 0.2*%x + 0.5 + epsilon

X data = np.random.rand(100,1)
epsilon = 0.0l*np.random.randn(100,1)
y data = 0.2*x data + 0.5 + epsilon

pl.plot(x data, y data,’'.")

nI.\

Tensor

Example-02: Linear Regression (p3) '|.‘

Tensor
Define the model and the loss function, train it:

In [4]: # syntax: tf.Variable(<initial-value>, name=<optional-name>)
w = tf.Variable(l, name='weight', dtype=tf.float32)

b = tf.variable(0, name='bias', dtype=tf.float32)

y = w*x data + b # note the overloading and broadcasting
loss function J

J = tf.reduce mean((y - y _data)**2)

train = tf.train.GradientDescentOptimizer(0.25).minimize(J)

In [5]: # train the model
session = tf.Session()

init = tf.global variables initializer()
session.run(init)
y_init = session.run(y) # y prediction with untrained w, b

for i in range(5000):
session.run(train)
print(session.run([w,b]))

[0.2023287, 0.49739757]

Example-02: Linear Regression (p4) .I_~

_ _ o Tensor
Visualize the training out:
In [6]: pl.plot(x _data, y data, '.', color='r")
pl.plot(x _data, y init, '.', color='g')

pl.plot(x _data, session.run(y), , color='b")

Out[6]: [<matplotlib.lines.Line2D at 0x1149e7908>]

10' =

0.8 - ’

0.6 1

0.4 - o~

0.2 4 o’

001 =+

Example-03: digit recognition (p1) : |~\

Tensor
Goal: given enough images and labels, find the weights,

biases to identify digits.
Dataset: MNIST dataset: http://yann.lecun.com/exdb/mnist/

Ref: https://www.tensorflow.org/get started/mnist/beqginners
Image size: 28*28=784, so x[784, m], y[10, m]

DV=23 44567 89
©l232435¢"78 4
01 A3 45617 61
012375787
21337541789

Example-03: digit recognition (p2) ‘ |.‘

Tensor
= Model: simple 1-layer neural network.
= Activation function: exp(z;)
softmax(x); =
>_; exp(z;)
+b1 e . @
n
O
|3 —®
Q
X
-|—b3 — — @

(www.tensorflow.org)

1 1

Example-03: digit recognition (p3)

Cross entropy loss function

Cost function

One-hot vector

10
Ly, 5™ ==Y y"logp?

j=I1

1 < i) ~(i
J==Y L. 3")
mi=1

nI.\

Tensor

Example-03: digit recognition (p4) .I:

Tensor
= |mport the data, and define the model

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input data

def myfunc():

data dir="/Users/binchen/Desktop/RCC/MachineLearn/tensorflow/examples

mnist = input data.read data sets(data_dir, one hot=True)
Create the model

X = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.vVariable(tf.zeros([10]))

y = tf.matmul(x, W) + b

= tf.placeholder(tf.float32, [None, 10])

g

Example-03: digit recognition (p5) ‘ |.‘

Tensor
Define the loss function (cross_entropy), and train the model

cross_entropy = tf.reduce mean(
tf.nn.softmax cross entropy with logits(labels=y , logits=y))
train step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

init = tf.global variables initializer()
sess = tf.Session()
sess.run(init)

train the model

for in range(1000):
batch xs, batch ys = mnist.train.next batch(100)
sess.run(train step, feed dict={x: batch xs, y : batch ys})

Test trained model

correct prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y , 1))

accuracy = tf.reduce mean(tf.cast(correct prediction, tf.float32))

print("\nThe accuracy on test data is ",
sess.run(accuracy, feed dict={x: mnist.test.images,

y_: mnist.test.labels}))

_ j Example-03: digit recognition (p5) '|.‘
\ 1851 _~ Tensor

= Accuracy on test data: ~91%

myfunc()

Extracting /Users/binchen/Desktop/RCC/MachineLearn/tensorflow/examples
/workshop/mnist/input data/train-images-idx3-ubyte.gz

Extracting /Users/binchen/Desktop/RCC/MachineLearn/tensorflow/examples
/workshop/mnist/input data/train-labels-idxl-ubyte.gz

Extracting /Users/binchen/Desktop/RCC/MachineLearn/tensorflow/examples
/workshop/mnist/input data/t1l0k-images-idx3-ubyte.gz

Extracting /Users/binchen/Desktop/RCC/MachineLearn/tensorflow/examples
/workshop/mnist/input data/t10k-labels-idxl-ubyte.gz

The accuracy on test data is 0.9171

Example-03 Improved (p1)) |~\

Tensor
Goal: MNIST, but with deep network, want higher accuracy

3 hidden layers with RelLU, output layer softmax

hidden layer 1 hidden layver 2 hidden layer 3

input layer

W 77/
5/ |

:’1":'(ey
x '

0JeJoJe
7

784 100 60 30 10

A 3 hidden layer deep neural network for MNIST

Example-03 Improved (p2) . |.‘

Tensor
Goal: MNIST, but with deep network, want higher accuracy

Create the model
X = tf.placeholder(tf.float32, [None, 784])

Wl = tf.vVariable(tf.truncated normal([784, 100], stddev=0.1))
bl = tf.variable(tf.zeros([100]))

W2 = tf.Variable(tf.truncated normal([100, 60], stddev=0.1))
b2 = tf.vVariable(tf.zeros([60]))

W3 = tf.variable(tf.truncated normal([60, 30], stddev=0.1))
b3 = tf.variable(tf.zeros([30]))

W4 = tf.variable(tf.truncated normal([30, 10], stddev=0.1))
b4 = tf.variable(tf.zeros([10]))

vl = tf.nn.relu(tf.matmul(x, W1l) + bl)

yv2 = tf.nn.relu(tf.matmul (yl, W2) + b2)

yv3 = tf.nn.relu(tf.matmul(y2, W3) + b3)

y = tf.matmul(y3, W4) + b4

y = tf.placeholder(tf.float32, [None, 10])

Example-03 Improved (p3) . |.‘

Tensor
= The accuracy increases from ~91% to ~97%

= Note tensorflow automatically used all 4 cores of my laptop

tic wall = timeit.default timer()
tic_cpu = time.clock()

myfunc()

toc_wall = timeit.default timer()
toc _cpu = time.clock()

float(toc_cpu - tic cpu))
float(toc_wall - tic wall))

print("the cpu time is %9.5f seconds"
print("the wall time is %9.5f seconds"”

o o®

Extracting /Users/binchen/Desktop/RCC/MachineLearn/tensorflow/example
s/workshop/mnist/input data/train-images-idx3-ubyte.gz
Extracting /Users/binchen/Desktop/RCC/MachineLearn/tensorflow/example
s/workshop/mnist/input data/train-labels-idxl-ubyte.gz
Extracting /Users/binchen/Desktop/RCC/MachineLearn/tensorflow/example
s/workshop/mnist/input data/tl0k-images-idx3-ubyte.gz
Extracting /Users/binchen/Desktop/RCC/MachineLearn/tensorflow/example
s/workshop/mnist/input data/tl10k-labels-idxl-ubyte.gz

The accuracy on test data is 0.9764
the cpu time is 79.76172 seconds
the wall time is 22.18648 seconds

One Page about Python on HPC

Python 2.7 and Python 3.5 are available on HPC nodes.
Popular packages such as numpy, scipy, matplotlib are

preinstalled.

Anaconda python with ~200 packages including tensorflow

Is available at
/panfs/storage.local/opt/python/anaconda/bin/python

= Users are encouraged to install packages to their own disk

space via the python virtual environment:

https://rcc.fsu.edu/software/python

One Page about GPUs on HPC

Hardware upgrade from Tesla M2050 to GeForce1080 Ti.
Compute capability from 2.0 to 6.1 (Fermi to Pascal)
Cuda driver upgraded from 6.5 to 9.0

Each compute node with GPUs have 4 GPU cards

https://rcc.fsu.edu/software/cuda

#!/bin/bash

#SBATCH -N 1

#SBATCH -n 1

#SBATCH -J "cuda-job"
#SBATCH -t 4:00:00
#SBATCH -p backfill
#SBATCH --gres=gpu:1
#SBATCH --mail-type=ALL

co~NOYUT A WN P

=
P o WO

load the cuda module to set up the environment
module load cuda

el
S WN

the following line should provide the full path to the cuda compiler
. which nvcc

PR
~N O Ul

execute your cuda executable a.out
srun -n 1 ./a.out <input.dat >output.txt

=
oo

A Little about Convolution

From fully connected to partially connected.

Convolution adds locality back.

Convolution reduce the parameter size significantly

Convolutional layer

—— W[4, 4, 3]
B W (4, ¢ 3]) W[‘f) ‘f) 5/ -7’]
. I S ﬁ
/ / /}
£ilter /rf//uf ou *//a s
5/ 28 channels channels

Picture from: Martin Gorner

A Little about Convolution (p2)

Structure of the ILSVRC-2012 competition winner

K 5\ " 3 X S\ e
5 AL ‘ 3| N\
\ i — 3 N N,
48 ~ 192 192 128 2048 2048 \dense
5 27 128 R — —
\" AN 13 13
Y S i P e e
- nse n
— N EN \I 3J! U 13 o ense
- \L 3| .\ 1000
X7 192 192 128 Max || |]
- : 2048
Strid Max 128 Max pooling 2048
of 4 pooling pooling

a8

(Alex Kriihevsky, llya Sutskever Geoffrey E. Hinton 2012 paper

