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Machine Learning (p1) 

▪  Supervised VS Unsupervised learning 

▪  Regression VS Classification 

▪  Linear VS Nonlinear Regression 

▪  Binary VS Multivariate Classification. 

▪  Clustering (e.g., K-Means) 

▪  Support Vector Machine (SVM)  

▪  Neural Network, Deep Neural Network 
 
            



Machine Learning (p2) 
▪  Regression: 

 Predict the price of a house. 

▪  Binary classification y = [0,1]: 

 Online advertisement. (will this customer hit this AD?)   

▪  Multivariate classification 

▪  Digit recognition  y = [0,1,2,3,4,5,6,7,8,9] 

▪  Image recognition (is this a cat?) 



Machine Learning (p3) 
▪  Structured data:  

▪  Data like tables with records, 

▪  say, predicting house price, loan approvals. 

▪  Unstructured data: 
▪  Images, Audios. 

▪  human’s natural perceptions often do a great job with accuracy 

close to Bayes error.   

▪  ML has beaten human beings on many structured data 
▪  Amazon’s recommended list of books 

▪  Deep learning is doing the same thing for unstructured data. 
▪  Autonomous driving 

▪  Natural language processing (NLP) 



Machine Learning (p4) 

▪  Deep learning is a subset of machine learning. 

▪  The statistics is essentially the same, e.g., 

 loss/cost function (minimize the cost) 

 training/dev/test set 

 bias-variance tradeoff 

 model tuning/regularizing (hyper-parameters) 

▪  Details differ, and there are new concepts, e.g., 

     activation function (sigmoid, ReLU) 

       gradient descent (momentum, RMSprop, AdamOptimizer) 

 forward/backward propagation(vanishing/exploding gradient) 

 dropout, batch normalization. 



▪  Am I under/over-fitting my data (Bias-Variance tradeoff)? 

(source:  Hastie, Tibshirani, & Friedman, text book E.S.L) 

Machine Learning (p5) 



▪  Training/Dev/Test splitting of data 

Machine Learning (p6) 

(Traditional Machine Learning) 

Train ~60% Dev ~20% Test ~20% 

Train ~98% Dev ~1% Test ~1% 

(Deep Learning) 

Train ~78% Dev 1% Test 1% Train-Dev 20% 

(Deep Learning with Mis-Matched Data) 



What Drives Deep Learning? (p1) 

Amount of Data 
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SVM, regressions, 
etc. 

Small NN 

Medium NN 

Large NN 

§  Scale-Performance Relationship 



What Drives Deep Learning? (p2) 

§  The amount of data available 

§  The amount of computation 

           The width and depth of the network 

§  Progress in algorithm design 

 Activation function (from sigmoid to ReLU)  

 from SNN, to CNN, RNN, etc. 

§  The computing power of modern hardware 

§  E.g., Graphics Processing Units (GPUs) 
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From Regression to Neural Network (p1) 

Size of house 

P
ric

e 
y = wx +b

Standard linear regression 



From Regression to Neural Network (p2) 

Size x Price y 

A Neuron 
 

§  Q1. So can I consider my simple linear regression as a neural 
network? 

§  Answer: Yes, sort of.   

§  It is a single-layer network, with activation function g(x) = x 

§  Such simplistic activation function is almost never used. 
 

§  A deep learner’s abstraction of the linear regression: 



From Regression to Neural Network (p3) 

#bedrooms 
Price y 

Size x 

Zip code 

Wealth 

y = f (x1,x2 ,x3,x4 )

#bedrooms 
Price y 

Size x 

Zip code 

Wealth 

Family size 

School quality 

walkability 

Still regression! 

Neural network with one hidden layer 



What is a neural network? (p1) 

(Picture from Wikipedia) 

§  Q1. How many layers are there? 

§  Q2.  How many hidden units? 

§  Q2. Is it a deep neural network? 

§  Q3. What does the arrow mean? 
 
 



What is a neural network? (p2) 

(Picture from Wikipedia) 

§  Q1. How many layers are there? 

§   A1:   2 (instead of 3).     

§  Q2.  How many hidden units? 

§  A2:    4. 

§  Q3. Is it a deep neural network? 

§  A4:   no!  (>=2 hidden layers) 

§  Q4. What does the arrow mean? 

§  A4:  flow of data (tensorflow) 
 
 



What is a neuron? (p1) 

(Picture from Wikipedia) 



What is a neuron? (p2) 

(Picture from Andrew Ng) 

A neuron does simple and specific task: an affine transformation 
composed with an activation function. 
 
(Pay attention to the naming of each variables: z, w, a, b, etc. ) 



Activation function  

§  Activation function adds non-linearity to your network. 

§  Popular activation functions include, sigmoid, tanh, ReLU 

§  Different layers of can use different activation function. 

a = tanh(z)

ReLU LeakyReLU



Logistic Regression VS Neural Network  

§  The sigmoid activation function was also used in logistic 

regression in traditional statistical learning. 

§  Logistic regression is simple Neural Network with sigmoid 

activation function. 

 

a = ŷ = 1
1+ e−(w

T x+b)



Loss Function and Cost Function 

§  The Loss function                 tells how well your model 

fits a data point (here i labels the data point). 

§  Cost Function J is the average of the loss function over 

the sample. 

§  Binary Classification as an example 

 

§  Chi-square for regression analysis as another… 

 

L( ŷi , yi )

L( ŷi , yi ) = −[yi log ŷi + (1− yi )log(1− ŷi )]

J = 1
m

L( ŷi , yi )i=1

m
∑

J = 1
m

( ŷi − yi )
2

i=1

m
∑



Loss Function and Cost Function (p2) 

§  Why we need the Loss function, or the cost function? 

§  Answer: we need them to determine the model parameters 

§  To train the NN we optimize the cost via gradient descent. 

L( ŷ, y)

Wn1,n0
,  bn1

Wn2 ,n1
,  bn2

n0 n1 n2

L0 L1 L2

Inference Graph and Train Graph 



Gradient Descent 

§  Given labeled data (x_i, y_i), find the parameters (W_{jk}, 

b_j)  by minimizing the cost function J. 

§  Method: gradient descent 

(From Andrew Ng’s Lecture Notes) 

θ j  :=  θ j −α
∂J
∂θ j

(α is the learning rate) 
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Deep Neural Network 
▪  A neural network with at least 2 hidden layers 

▪  The hidden layers can be very wide (millions of hidden units) 

▪  The width (# of units) varies from layer to layer. 

            

A 4-layer deep neural network 

W [1],b[1] W [2],b[2] W [3],b[3] W [4],b[4]



Forward and Backward Propagation 

§  Forward propagation: given labeled data (x_i, y_i), and parameters 

(W, b) compute the cost function J. 

§  Backward propagation: compute the derivatives of cost function 

w.r.t the model parameters. Update the model parameters (W, b). 

  ReLU   ReLU  Sigmoid 

  ReLU   ReLU  Sigmoid 

ŷ

L( ŷ, y)

∂J
∂ŷ

x

z[1] z[2] z[3]

dW [3],db[3]

∂J
∂a[2]

∂J
∂a[1]

dW [2],db[2]dW [1],db[1]

W [1],b[1] W [2],b[2] W [3],b[3]

a[1] a[2] a[3]a[0]



Compute the Derivatives 

§  Using binary classification an example 

§  Assuming sigmoid activation function 

§  Derivatives for the affine/linear transformation is easy 

§  Now using chain rule to concatenate the above together. 

L( ŷi , yi ) = −[yi log ŷi + (1− yi )log(1− ŷi )]

⇒
∂L
∂ŷ

= −
yi
ŷi
+
1− yi
1− ŷi

ŷ = a = g(z) = 1
1+ e− z

⇒
∂a
∂z

= a(1− a)

!z =W
!
x +
!
b⇒

∂zi
∂Wij

= x j ,
∂zi
∂bj

= δij



Computation Graph (Divide & Conquer) 

§  The computation graph for 

§  This really helps when you think about forward/backward 

propagation. 

§  Understand/Stick with a good notation is also critical.  

J = 3*(a+b*c)



Parameters VS Hyper-parameters 

§  Parameters:  (W, b) for each layer of the NN. 

 (W, b) can be learned by training the NN using the training data set.  

§  Hyper-parameters include:  

 1.  # layers for the NN;   

 2.  # units for each layer; 

       3.  # learning rate α.    

 4.  the choice of activation function. 

       5.  batch data size.    

 6.  # iteration for convergence. 

§  Deep learning tends to have many more hyper-parameters 

than normal ML methods. 

§  Hyper-parameters are determined via the dev data set. 
        



Parameters VS Hyperparameters (p2) 

§  Choosing between other machine learning methods and 
deep leaning can be empirical. 

§  Large number of hyper-parameters make deep learning very 
empirical.      

                Software packages  
(Sklearn, Torch, Caffe, Keras, Tensorflow) 

Hardware (GPU,CPU) 

Collect Data 

FSU/RCC 

(Pic from Andrew Ng) 
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Introduction to TensorFlow (p1) 

§  A framework (library/package) for deep learning. 

§  Open source (originally by Google Brain Team). 

§  Python/C++ frontend, and C++ backend. 

§  Support hardware accelerators GPU. 

§  Current stable release v1.3       



How does TensorFlow work? 

§  User defines the architecture of the NN (inference graph). 

§  User defines the loss/cost function (train graph). 

§  User provides the data (train/dev/test). 

§  User chooses the optimizer to try. 

§  User picks hyper-parameters (mini-batch size, learning rate). 

§  Tensorflow does the rest automatically for you. 

 forward propagation to compute the loss function; 

 backward propagation to compute the derivatives; 

 many optimization algorithms are included  

      (e.g.,    tf.train.GradientDescentOptimizer(), 

     tf.train.AdamOptimizer(…) ) 



A Toy Example (ex01) 

§  Goal: train a toy Neural network with loss function 

§  Here w is the only parameter to learn. 

§  The training output should be very close to 6. 

§  Sorry (no input at all, but will add later on). 

L(w) = w2 −12w+36



A Toy Example (ex01) 



Toy Example Improved (ex01b) 

§  Loss function L = x0w
2 − x1w+ x2



Example-02: Linear Regression 

§  Mysterious equation: 

§  Model:   

§  Goal: given enough (x_i, y_i) pairs, find out (w,b). 

y = 0.2x +0.5+ε
y = wx +b



Example-02: Linear Regression (p2) 

§  Generate the data: y = 0.2x +0.5+ε



Example-02: Linear Regression (p3) 

§  Define the model and the loss function, train it: 



Example-02: Linear Regression (p4) 

§  Visualize the training out: 



Example-03: digit recognition (p1) 

§  Goal: given enough images and labels, find the weights, 

biases to identify digits.  

§  Dataset: MNIST dataset: http://yann.lecun.com/exdb/mnist/ 

§  Ref: https://www.tensorflow.org/get_started/mnist/beginners 

§  Image size: 28*28=784, so  x[784, m],  y[10, m] 



Example-03: digit recognition (p2) 

§  Model: simple 1-layer neural network. 

§  Activation function:  

x784 y10+b10
(www.tensorflow.org) 



Example-03: digit recognition (p3) 

§  Cross entropy loss function 

§  Cost function 

§  One-hot vector  

L(y (i ) , ŷ (i ) ) = − y (i )j  log ŷ (i )j
j=1

10

∑

J = 1
m

L(y (i ) , ŷ (i ) )
i=1

m

∑



Example-03: digit recognition (p4) 

§  Import the data, and define the model 



Example-03: digit recognition (p5) 

§  Define the loss function (cross_entropy), and train the model 



Example-03: digit recognition (p5) 

§  Accuracy on test data: ~91% 



Example-03 Improved (p1) 

§  Goal: MNIST, but with deep network, want higher accuracy 

§   3 hidden layers with ReLU, output layer softmax 

A 3 hidden layer deep neural network for MNIST 

100 30 10784 60



Example-03 Improved (p2) 

§  Goal: MNIST, but with deep network, want higher accuracy 



Example-03 Improved (p3) 

§  The accuracy increases from ~91% to ~97% 

§  Note tensorflow automatically used all 4 cores of my laptop 



One Page about Python on HPC 

§  Python 2.7 and Python 3.5 are available on HPC nodes. 

§  Popular packages such as numpy, scipy, matplotlib are 

preinstalled. 

§  Anaconda python with ~200 packages including tensorflow 

is available at 

            /panfs/storage.local/opt/python/anaconda/bin/python 

§  Users are encouraged to install packages to their own disk 

space via the python virtual environment: 

           https://rcc.fsu.edu/software/python 



One Page about GPUs on HPC 
§  Hardware upgrade from Tesla M2050 to GeForce1080 Ti. 

§  Compute capability from 2.0 to 6.1 (Fermi to Pascal) 

§  Cuda driver upgraded from 6.5 to 9.0 

§  Each compute node with GPUs have 4 GPU cards 

            https://rcc.fsu.edu/software/cuda 



A Little about Convolution 
§  From fully connected to partially connected. 

§  Convolution adds locality back. 

§  Convolution reduce the parameter size significantly 

Picture from:  Martin Gorner 



A Little about Convolution (p2) 
§  Structure of the ILSVRC-2012 competition winner 

(Alex Krizhevsky, Ilya Sutskever Geoffrey E. Hinton 2012 paper 


