
Machine Learning With Python

Bin Chen
Nov. 7, 2017

Research Computing Center

Outline

▪  Introduction to Machine Learning (ML)

▪  Introduction to Neural Network (NN)

▪  Introduction to Deep Learning NN

▪  Introduction to TensorFlow

▪  A little about GPUs

Motivation

Statistical Inference

Statistical Learning

Machine Learning

Deep Learning

Big Data

Super Computer

fuel

Artificial Intelligence

Machine Learning (p1)

▪  Supervised VS Unsupervised learning

▪  Regression VS Classification

▪  Linear VS Nonlinear Regression

▪  Binary VS Multivariate Classification.

▪  Clustering (e.g., K-Means)

▪  Support Vector Machine (SVM)

▪  Neural Network, Deep Neural Network

Machine Learning (p2)
▪  Regression:

 Predict the price of a house.

▪  Binary classification y = [0,1]:

 Online advertisement. (will this customer hit this AD?)

▪  Multivariate classification

▪  Digit recognition y = [0,1,2,3,4,5,6,7,8,9]

▪  Image recognition (is this a cat?)

Machine Learning (p3)
▪  Structured data:

▪  Data like tables with records,

▪  say, predicting house price, loan approvals.

▪  Unstructured data:
▪  Images, Audios.

▪  human’s natural perceptions often do a great job with accuracy

close to Bayes error.

▪  ML has beaten human beings on many structured data
▪  Amazon’s recommended list of books

▪  Deep learning is doing the same thing for unstructured data.
▪  Autonomous driving

▪  Natural language processing (NLP)

Machine Learning (p4)

▪  Deep learning is a subset of machine learning.

▪  The statistics is essentially the same, e.g.,

 loss/cost function (minimize the cost)

 training/dev/test set

 bias-variance tradeoff

 model tuning/regularizing (hyper-parameters)

▪  Details differ, and there are new concepts, e.g.,

 activation function (sigmoid, ReLU)

 gradient descent (momentum, RMSprop, AdamOptimizer)

 forward/backward propagation(vanishing/exploding gradient)

 dropout, batch normalization.

▪  Am I under/over-fitting my data (Bias-Variance tradeoff)?

(source: Hastie, Tibshirani, & Friedman, text book E.S.L)

Machine Learning (p5)

▪  Training/Dev/Test splitting of data

Machine Learning (p6)

(Traditional Machine Learning)

Train ~60% Dev ~20% Test ~20%

Train ~98% Dev ~1% Test ~1%

(Deep Learning)

Train ~78% Dev 1% Test 1% Train-Dev 20%

(Deep Learning with Mis-Matched Data)

What Drives Deep Learning? (p1)

Amount of Data

P
er

fo
rm

an
ce

SVM, regressions,
etc.

Small NN

Medium NN

Large NN

§  Scale-Performance Relationship

What Drives Deep Learning? (p2)

§  The amount of data available

§  The amount of computation

 The width and depth of the network

§  Progress in algorithm design

 Activation function (from sigmoid to ReLU)

 from SNN, to CNN, RNN, etc.

§  The computing power of modern hardware

§  E.g., Graphics Processing Units (GPUs)

Outline

▪  Introduction to Machine Learning (ML)

▪  Introduction to Neural Network (NN)

▪  Introduction to Deep Learning NN

▪  Introduction to TensorFlow

▪  A little about GPUs

From Regression to Neural Network (p1)

Size of house

P
ric

e
y = wx +b

Standard linear regression

From Regression to Neural Network (p2)

Size x Price y

A Neuron

§  Q1. So can I consider my simple linear regression as a neural
network?

§  Answer: Yes, sort of.

§  It is a single-layer network, with activation function g(x) = x

§  Such simplistic activation function is almost never used.

§  A deep learner’s abstraction of the linear regression:

From Regression to Neural Network (p3)

#bedrooms
Price y

Size x

Zip code

Wealth

y = f (x1,x2 ,x3,x4)

#bedrooms
Price y

Size x

Zip code

Wealth

Family size

School quality

walkability

Still regression!

Neural network with one hidden layer

What is a neural network? (p1)

(Picture from Wikipedia)

§  Q1. How many layers are there?

§  Q2. How many hidden units?

§  Q2. Is it a deep neural network?

§  Q3. What does the arrow mean?

What is a neural network? (p2)

(Picture from Wikipedia)

§  Q1. How many layers are there?

§  A1: 2 (instead of 3).

§  Q2. How many hidden units?

§  A2: 4.

§  Q3. Is it a deep neural network?

§  A4: no! (>=2 hidden layers)

§  Q4. What does the arrow mean?

§  A4: flow of data (tensorflow)

What is a neuron? (p1)

(Picture from Wikipedia)

What is a neuron? (p2)

(Picture from Andrew Ng)

A neuron does simple and specific task: an affine transformation
composed with an activation function.

(Pay attention to the naming of each variables: z, w, a, b, etc.)

Activation function

§  Activation function adds non-linearity to your network.

§  Popular activation functions include, sigmoid, tanh, ReLU

§  Different layers of can use different activation function.

a = tanh(z)

ReLU LeakyReLU

Logistic Regression VS Neural Network

§  The sigmoid activation function was also used in logistic

regression in traditional statistical learning.

§  Logistic regression is simple Neural Network with sigmoid

activation function.

a = ŷ = 1
1+ e−(w

T x+b)

Loss Function and Cost Function

§  The Loss function tells how well your model

fits a data point (here i labels the data point).

§  Cost Function J is the average of the loss function over

the sample.

§  Binary Classification as an example

§  Chi-square for regression analysis as another…

L(ŷi , yi)

L(ŷi , yi) = −[yi log ŷi + (1− yi)log(1− ŷi)]

J = 1
m

L(ŷi , yi)i=1

m
∑

J = 1
m

(ŷi − yi)
2

i=1

m
∑

Loss Function and Cost Function (p2)

§  Why we need the Loss function, or the cost function?

§  Answer: we need them to determine the model parameters

§  To train the NN we optimize the cost via gradient descent.

L(ŷ, y)

Wn1,n0
, bn1

Wn2 ,n1
, bn2

n0 n1 n2

L0 L1 L2

Inference Graph and Train Graph

Gradient Descent

§  Given labeled data (x_i, y_i), find the parameters (W_{jk},

b_j) by minimizing the cost function J.

§  Method: gradient descent

(From Andrew Ng’s Lecture Notes)

θ j := θ j −α
∂J
∂θ j

(α is the learning rate)

Outline

▪  Introduction to Machine Learning (ML)

▪  Introduction to Neural Network (NN)

▪  Introduction to Deep Neural Network

▪  Introduction to TensorFlow

▪  A little about GPUs

Deep Neural Network
▪  A neural network with at least 2 hidden layers

▪  The hidden layers can be very wide (millions of hidden units)

▪  The width (# of units) varies from layer to layer.

A 4-layer deep neural network

W [1],b[1] W [2],b[2] W [3],b[3] W [4],b[4]

Forward and Backward Propagation

§  Forward propagation: given labeled data (x_i, y_i), and parameters

(W, b) compute the cost function J.

§  Backward propagation: compute the derivatives of cost function

w.r.t the model parameters. Update the model parameters (W, b).

 ReLU ReLU Sigmoid

 ReLU ReLU Sigmoid

ŷ

L(ŷ, y)

∂J
∂ŷ

x

z[1] z[2] z[3]

dW [3],db[3]

∂J
∂a[2]

∂J
∂a[1]

dW [2],db[2]dW [1],db[1]

W [1],b[1] W [2],b[2] W [3],b[3]

a[1] a[2] a[3]a[0]

Compute the Derivatives

§  Using binary classification an example

§  Assuming sigmoid activation function

§  Derivatives for the affine/linear transformation is easy

§  Now using chain rule to concatenate the above together.

L(ŷi , yi) = −[yi log ŷi + (1− yi)log(1− ŷi)]

⇒
∂L
∂ŷ

= −
yi
ŷi
+
1− yi
1− ŷi

ŷ = a = g(z) = 1
1+ e− z

⇒
∂a
∂z

= a(1− a)

!z =W
!
x +
!
b⇒

∂zi
∂Wij

= x j ,
∂zi
∂bj

= δij

Computation Graph (Divide & Conquer)

§  The computation graph for

§  This really helps when you think about forward/backward

propagation.

§  Understand/Stick with a good notation is also critical.

J = 3*(a+b*c)

Parameters VS Hyper-parameters

§  Parameters: (W, b) for each layer of the NN.

 (W, b) can be learned by training the NN using the training data set.

§  Hyper-parameters include:

 1. # layers for the NN;

 2. # units for each layer;

 3. # learning rate α.

 4. the choice of activation function.

 5. batch data size.

 6. # iteration for convergence.

§  Deep learning tends to have many more hyper-parameters

than normal ML methods.

§  Hyper-parameters are determined via the dev data set.

Parameters VS Hyperparameters (p2)

§  Choosing between other machine learning methods and
deep leaning can be empirical.

§  Large number of hyper-parameters make deep learning very
empirical.

 Software packages
(Sklearn, Torch, Caffe, Keras, Tensorflow)

Hardware (GPU,CPU)

Collect Data

FSU/RCC

(Pic from Andrew Ng)

Outline

▪  Introduction to Machine Learning (ML)

▪  Introduction to Neural Network (NN)

▪  Introduction to Deep Learning NN

▪  Introduction to TensorFlow

▪  A little about GPUs

Introduction to TensorFlow (p1)

§  A framework (library/package) for deep learning.

§  Open source (originally by Google Brain Team).

§  Python/C++ frontend, and C++ backend.

§  Support hardware accelerators GPU.

§  Current stable release v1.3

How does TensorFlow work?

§  User defines the architecture of the NN (inference graph).

§  User defines the loss/cost function (train graph).

§  User provides the data (train/dev/test).

§  User chooses the optimizer to try.

§  User picks hyper-parameters (mini-batch size, learning rate).

§  Tensorflow does the rest automatically for you.

 forward propagation to compute the loss function;

 backward propagation to compute the derivatives;

 many optimization algorithms are included

 (e.g., tf.train.GradientDescentOptimizer(),

 tf.train.AdamOptimizer(…))

A Toy Example (ex01)

§  Goal: train a toy Neural network with loss function

§  Here w is the only parameter to learn.

§  The training output should be very close to 6.

§  Sorry (no input at all, but will add later on).

L(w) = w2 −12w+36

A Toy Example (ex01)

Toy Example Improved (ex01b)

§  Loss function L = x0w
2 − x1w+ x2

Example-02: Linear Regression

§  Mysterious equation:

§  Model:

§  Goal: given enough (x_i, y_i) pairs, find out (w,b).

y = 0.2x +0.5+ε
y = wx +b

Example-02: Linear Regression (p2)

§  Generate the data: y = 0.2x +0.5+ε

Example-02: Linear Regression (p3)

§  Define the model and the loss function, train it:

Example-02: Linear Regression (p4)

§  Visualize the training out:

Example-03: digit recognition (p1)

§  Goal: given enough images and labels, find the weights,

biases to identify digits.

§  Dataset: MNIST dataset: http://yann.lecun.com/exdb/mnist/

§  Ref: https://www.tensorflow.org/get_started/mnist/beginners

§  Image size: 28*28=784, so x[784, m], y[10, m]

Example-03: digit recognition (p2)

§  Model: simple 1-layer neural network.

§  Activation function:

x784 y10+b10
(www.tensorflow.org)

Example-03: digit recognition (p3)

§  Cross entropy loss function

§  Cost function

§  One-hot vector

L(y (i) , ŷ (i)) = − y (i)j log ŷ (i)j
j=1

10

∑

J = 1
m

L(y (i) , ŷ (i))
i=1

m

∑

Example-03: digit recognition (p4)

§  Import the data, and define the model

Example-03: digit recognition (p5)

§  Define the loss function (cross_entropy), and train the model

Example-03: digit recognition (p5)

§  Accuracy on test data: ~91%

Example-03 Improved (p1)

§  Goal: MNIST, but with deep network, want higher accuracy

§  3 hidden layers with ReLU, output layer softmax

A 3 hidden layer deep neural network for MNIST

100 30 10784 60

Example-03 Improved (p2)

§  Goal: MNIST, but with deep network, want higher accuracy

Example-03 Improved (p3)

§  The accuracy increases from ~91% to ~97%

§  Note tensorflow automatically used all 4 cores of my laptop

One Page about Python on HPC

§  Python 2.7 and Python 3.5 are available on HPC nodes.

§  Popular packages such as numpy, scipy, matplotlib are

preinstalled.

§  Anaconda python with ~200 packages including tensorflow

is available at

 /panfs/storage.local/opt/python/anaconda/bin/python

§  Users are encouraged to install packages to their own disk

space via the python virtual environment:

 https://rcc.fsu.edu/software/python

One Page about GPUs on HPC
§  Hardware upgrade from Tesla M2050 to GeForce1080 Ti.

§  Compute capability from 2.0 to 6.1 (Fermi to Pascal)

§  Cuda driver upgraded from 6.5 to 9.0

§  Each compute node with GPUs have 4 GPU cards

 https://rcc.fsu.edu/software/cuda

A Little about Convolution
§  From fully connected to partially connected.

§  Convolution adds locality back.

§  Convolution reduce the parameter size significantly

Picture from: Martin Gorner

A Little about Convolution (p2)
§  Structure of the ILSVRC-2012 competition winner

(Alex Krizhevsky, Ilya Sutskever Geoffrey E. Hinton 2012 paper

