

Introduction to HPC @ RCC September 14, 2016 Research Computing Center

FLORIDA STATE UNIVERSITY RESEARCH COMPUTING CENTER

What is HPC

"High Performance Computing most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one could get out of a typical desktop computer or workstation in order to solve large problems in science, engineering, or business"

Typical HPC Workflow

How to allocate resources?

Job scheduler

Partitions?

- Collection of nodes
- Access is granted through an account
- Users can run jobs on "their" account
- Spawn different architectures (eg AMD)
 - Jobs can not spawn different architectures
- Similar to Queues
 - Direct mapping account partition (RCC)

- Submit job to a partition.
 - partitions are managed by RCC staff
- Membership to accounts determines who can submit to which partition.
 - accounts are managed by 'owners'
- Feature (--constraint) determines where the job will run. Default: any.

Commands

SLURM		
sbatch	sbatch -p myqueue myjobscript.sh	Submit a batch script
srun & salloc	srun myprogram.exe salloc myprogram.exe	Submit an interactive program
squeue	squeue -p mypartition	Show jobs in a mypartition
squeue	squeue -j 1251 scontrol show job 1251	Inspect a specific job
squeue	squeue -j 1252start	Show start time of job
scancel	scancel 1251	Cancel a job
sinfo	sinfo -p mypartition	Shows nodes in mypartition

https://rcc.fsu.edu/docs/hpc-cheat-sheet

- Slurm takes memory in consideration
- Default is 4GB per core (2GB backfill{2})
- --mem-per-cpu=<MB> or --mem=<MB>
- Under the hood: memory is "mapped" to cores:
 - -n 1 --mem=5GB will reserve 2 cores on a node.
- Memory limit is enforced

How to submit a job

1. sbatch

non-interactive batch submission schedules job in background

2. srun & salloc

interactive submission

srun/salloc run program in foreground

srun can also be used in batch script!

Submit jobs: sbatch

sbatch {flags} myscript

- man sbatch
- sbatch -p myqueue -n 10 myscript
 - request 10 cores from the myqueue queue and run myscript job script
- sbatch myscript
 - request 1 core from my default queue
- sbatch -D myproject/workdir myscript
 - start job in \$HOME/myproject/workdir folder

srun vs salloc for submission

srun -n X program salloc -n X program

- both will allocate X cores
 - srun will start program X times
 - salloc will start 1 instance program

srun to submit a job

- man srun
- srun from a submit node will start a new job
 - srun -p myqueue myprogram
- will not run in the background (unless &)
- srun -n x myscript.sh will start x instances of myscript.sh
 - srun will not "interpret" scripts: ignore #SBATCH flags

srun in job scripts

- slurm enabled replacement of mpirun
- mpirun is no longer supported (mvapich2)
- srun myprogram
 - will run myprogram on requested number of cores (sbatch -n x)
- srun -n y myprogam
 - will run myprogram on y number of cores
 - error if y>x (sbatch -n x)
- be careful when you use srun in a script submitted by srun

s* caveats

- Jobs will start in the current working directory (unless -D flag was used)
 - moab: job will always start in home directory
- Job environment is a copy of your working environment (except for limits)
 - environment variables
 - be careful what modules you autoload in your ~/.bashrc
- sbatch is not for interactive jobs

Common flags for s*

: Request number of cores

- -n number
- -p partition : Run a job on this queue
- -*C feature* : Restrict job to nodes with this feature
- --exclusive : Do not share nodes with other jobs
- -o outputfile : output file (default slurm)
- -J jobname : job name (not outputfile)
- --mail-type=X : receive this type of notifications (ALL, BEGIN, END, FAIL)

Less Common flags

- --begin=time : Start a job at time time
- --output=slurm.%N.%j.out : output log
- --input=inputfile.txt : use text from file for std input
- --pty : interactive job, only for srun!

Submit a job

sbatch -p bio_q mywrf.sh
srun -p cob_q --constraint=AMD XYZ.exe
sbatch -p yang_q,bio_q job.sh
sbatch -o myjob.%j.out myjob.sh
srun --pty /bin/bash

Interactive jobs --pty

srun --pty someprogram

```
srun --pty /bin/bash
srun --pty R
srun --pty gdb myprogram
```

- srun -n x --pty program will start 1 instance
- srun will start from your submit directory

Job script for parallel program

#!/bin/bash

#SBATCH - J MYJOBNAME

#SBATCH -n 10

module load gnu-openmpi

pwd

srun myprogram

FLORIDA STATE UNIVERSITY RESEARCH COMPUTING CENTER

Run a sequential program

#!/bin/bash

#SBATCH -J MY-R-CODE

#SBATCH --input myRinput.txt

pwd module load R

R -- no-save

FLORIDA STATE UNIVERSITY research computing center

- Job arrays are a way to efficiently submit large numbers of jobs.
- Single program with a lot of different datasets
- sbatch --array=1-10 program.sh
 - \$SLURM_ARRAY_TASK_ID

Disclaimer

- There are 2 sites about slurm. One is outdated:
 - computing.llnl.gov: original project site
 - refers to version 2.3
 - <u>http://www.schedmd.com</u>: correct website
- Don't use mpirun, use srun
 - mpirun still available for openmpi
 - both openmpi and mvapich2 support srun

#SBATCH -n 4 srun -n 5 myprogram

srun: error: Unable to create job step: More processors requested than permitted

srun --constraint "X&Y" myprogram

srun: error: Unable to allocate resources: Requested node configuration is not available

